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Quantum light excitation of Coulomb-coupled nanostructures, such as semiconductor quantum dots or light
harvesting molecules, is analyzed for fixed light intensity but different photon statistics. The theory predicts a
different excitation efficiency of the exciting light �thermal, coherent, and squeezed light� on the creation of
optically active excitons and biexcitons. In particular, measurable differences and a strong dependence for the
creation efficiency of biexcitons on the photon statistics are obtained.
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I. INTRODUCTION

Excitonic excitations in Coulomb-coupled nanostructures
are of particular interest to understand many basic processes
in many particle physics. Important examples are light har-
vesting complexes in coupled photosynthetical units1 and
nanoscale energy transfer in metal structures as well as semi-
conducting nanocrystals2 or in polymer composites.3 Man-
made system for promising applications, such as entangled
photon processing,4–6 are coupled semiconductor
nanostructures,7 since their size, shape, composition, and lo-
cation can be controlled by modern epitaxial growth
techniques8 or chemical synthesis.9 In our analysis, we focus
on dipole-dipole-coupled nanostructures such as semicon-
ductor quantum dots, providing typical couplings and param-
eters, representative for many of the mentioned nanosystems.

In this paper, we focus on Coulomb coupling via dipole-
dipole interaction, which leads to energy renormalization of
the ground, exciton, and biexciton states and Förster cou-
pling. These interactions transform the isolated two-level
systems into a multilevel system.10 Thus, the coupled quan-
tum systems form new eigenstates and the individual sys-
tems cannot be excited separately: excitons and many exci-
ton states, such as biexcitons, are formed.11 Our goal is to
consider the fully quantized electron-light interaction in a
multilevel system, expanding previous semiclassical investi-
gations on the nonlinear response of exciton-exciton
correlations.12 We evaluate the impact of photon statistics of
the incident light on the creation of excitons and biexcitons
using the photon statistics of the excitation light as an addi-
tional parameter to differentiate between these many particle
excitations and presenting hereby a theoretical approach to
implement photon-statistical properties13 in coupled semi-
conductor structures.

The statistical properties of the exciting light source can
be determined by the Hanbury Brown and Twiss14 experi-
ment and designed, e.g., using emission from a quantum dot
ensemble in a high-Q optical microcavity.15 Addressing the
quantum-optical properties of the excitation light, we calcu-
late the electron-light interaction on a microscopic level.16,17

Self-consistently including photon-statistical and Coulomb
effects we predict a measurable and strong impact of the
light source on the creation of biexcitons in comparison to
the creation of single excitons.

We focus on the excitation with thermal, coherent, and
squeezed light. Even if all parameters are chosen for
Coulomb-coupled quantum dots,18 all results reported here
apply also to other coupled nanostructures in which Cou-
lomb couplings are of primary importance. We expand the
investigations of isolated atoms interacting with a quantized
light field19–21 and translationally invariant semiconductors16

to Coulomb-coupled nanostructures. For instance, to give an
important example, photosynthetical units such as the light
harvesting complex II of green plants22 can be described as
Förster-coupled chlorophyll molecules23 and they interact
with thermal sunlight, approximated by the photon statistics
of black body radiation.

II. PHOTON STATISTICS

To characterize photon statistics of the excitation light
source, one typically uses the Hanbury Brown and Twiss14

setup, which is illustrated in Fig. 1. It consists of a light
source, a beam splitter, two photon detectors, and a cor-
relator. In this setup one measures the second-order correla-
tion function of two intensities at measurement time t �detec-
tor 1� and t+� �detector 2�, defining � as the delay time

g�2��t,�� =
�:I�t�I�t + ��:�
�I�t���I�t + ���

, �1�

which represents the normalized deviation from a Poisson
distribution.24 We discuss three typical cases for g�2� ��i�–
�iii��. �i� If there is no correlation between the emitted pho-
tons, the g�2� of a Poisson distribution has the value 1. The
probability to measure a photon at the detector 2 is indepen-
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FIG. 1. Hanbury Brown and Twiss �Ref. 14� experiment.
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dent of the measurement result at detector 1. Examples for
this photon statistics are laser fields well above threshold,
representing coherent �Glauber� states.25 �ii� If it is more
probable to measure a photon at detector 2, after detector 1
has measured a photon, the light field is described via a
super-Poissonian statistics, showing photon bunching. An ex-
ample is a thermal light field, which shows g�2�=2. An ex-
ample is the Bose-Einstein distribution of the black body
radiation.24 �iii� The light field is in a sub-Poissonian state if
g�2� is smaller than 1, meaning it is less probable to measure
a photon at detector 2 after a positive measurement result at
detector 1 is registered. This effect is called antibunching. An
example is squeezed light emitted by a single-photon
emitter.26

III. COUPLED EXCITON SYSTEM

Starting in a local basis �see Fig. 2�, the total Hamiltonian
Hlocal=H0e+He-e+H0p+He-p is expressed via local annihila-
tion �creation� operators and includes the free energy of the
electronic H0e and photonic system H0p, the electron-electron
interaction He-e, and the electron-light interaction He-p. The
free-energy part of the electronic system reads

H0e = �
n

���vnavn
† avn + ��cnacn

† acn� . �2�

The electronic states of Coulomb-coupled quantum dots are
described via local annihilation �creation� operators ain

�†�,
where i denotes the electronic state and n= �1,2� the quan-
tum dot. Each quantum dot has one valence and one
conduction-band state in effective-mass approximation of
each individual nanostructure,27 thus i= �v ,c� with ��vn va-
lence band and ��cn conduction-band energy of quantum dot
n. The number of electrons is conserved inside every quan-
tum dot, i.e., tunneling between the quantum dots is prohib-
ited.

The two-particle interaction Hamiltonian He-e describes
the Coulomb interaction and can be expressed in the local
basis of creation and annihilation operator of the individual
dots10,28

He-e = VFac1
† av2

† ac2av1 + VF
�av1

† ac2
† av2ac1 + Vcvac1

† av2
† av2ac1

+ Vvcav1
† ac2

† ac2av1 + Vccac1
† ac2

† ac2ac1 + Vvvav1
† av2

† av2av1.

�3�

The Coulomb-interaction results in a ground-state shift
Vvv, two monoexciton shifts Vvc

12, Vcv
21, and a biexciton shift

Vcc. These shifts correspond to energy renormalizations
caused by electrostatic interactions. VF

12 describes a nonradi-
ative Coulomb energy transfer from one quantum dot to the
other. H0e and He-e can be written in terms of four two-
electron operators by defining G=av1

† av2
† av2av1 as the

ground-state operator, P1
1=av1

† av2
† av2ac1 and P2

1

=av1
† av2

† ac2av1 as single-polarization operators leading to an
annihilation of a single-excitonic state, and P2

=av1
† av2

† ac2ac1 as the double-polarization operator, leading to
an annihilation of a biexcitonic state. In this local two-
electron basis,23 the Hamiltonian of the electronic system
He=H0e+He-e has nondiagonal contribution due to the
Förster-coupling VF,

He =�
A 0 0 0

0 B VF
� 0

0 VF C 0

0 0 0 D
	 , �4�

with A=��v1+��v2+Vvv, B=��v2+��c1+Vvc, C=��v1
+��c2+Vcv, and D=��c1+��c2+Vcc.

Thus, taking Förster coupling into account,11 P1
1 and P2

1

are no longer eigenstates of the Hamiltonian �see Eq. �4��. To
find the new eigenstates, the electron part of the Hamiltonian
is diagonalized23 and the local basis illustrated in Fig. 2 is
transformed into the nonlocal exciton basis: in our case into
a four-level system. All Coulomb-induced energy shifts are
included in the definition of the new operators derived via
diagonalization �ground state, monoexcitonic, and biexci-
tonic shifts and Förster interaction�. New collective operators
are formed: G�†� is the ground state, B2�†� the biexciton anni-
hilation �creation� operator, replacing two-particle operators
av1

† av2
† ac2ac1, and Bm

1�†� the exciton annihilation �creation� op-
erator �m=1,2�. Within the nonlocal basis the electron op-
erators �G�†� ,Bm

1�†� ,B2�†�� are eigenvectors of the electron part
of the Hamiltonian with eigenvalues ���G ,��m ,��B�. Bm

1�†�

represent a superposition of localized polarizations23

Bm
1 = �

n
vn

mPn
1. �5�

The coefficients vn
m depend on the strength of the Förster

coupling, the energy of the monoexcitonic energy shifts, and
on the band-gap frequencies. In case of two coupled quan-
tum dots, they can be calculated analytically via the quantity
�e=VF�B−��1�−1=−VF�C−��2�−1:

v1
1 = − v2

2 = − �1 + �e
2�−1/2�e, �6�

v2
1 = v1

2 = �1 + �e
2�−1/2. �7�

The electron-light interaction �matrix element Mkn
vc� is also

transformed into the new basis.23 Starting from the local two-
electron basis, He-p reads in a rotating-wave approximation27

He-p = − �
k,n

m�n

Mkn
vc�G†Pn

1ck
† + Pm

1†P2ck
†� + H.c., �8�

where ck
�†� denotes the Boson annihilation �creation� operator

of the photon in the excitation and dissipation modes with

Qu a n tu m
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Do t 2

Loca l Ba s is No n − loca l Ba s is

Co u lom b −

Inte ra c t ion
0

FIG. 2. Local �electron operators a�†�� and nonlocal �exciton
operator B�†�� excitation schemes of two Coulomb-coupled quantum
dots. Förster interaction transforms the coupled two-level systems
into a four-level system.
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frequency �=ck and m and n the quantum dots �Fig. 3�.
Equation �8� incorporates radiative coupling between the
dots, as well as local electron-light interaction. Using Eq. �5�
and introducing nonlocal matrix elements �M̄m

k ,M̄m,2
k �, He-p is

expressed via nonlocal electron operators. The nonlocal ma-
trix elements are defined as23

M̄m
k = �

n

�vn
m��M̄kn

vc, �9�

M̄m,2
k = �

i,n�i
vn

mM̄ki
vc. �10�

The new matrix elements include important characteristics of
Förster-coupled systems, e.g., a vanishing electron-light in-
teraction �dark states� in the case of two identical systems
�quantum dots�.10 Since the free-energy Hamiltonian of the
photonic system H0p stays unchanged, the total Hamiltonian
of the diagonalized system reads

H = �
m

��mBm
1†Bm

1 + ��BB2†B2 + �
k

��kck
†ck

− ��
km

�M̄m
k G†Bm

1 ck
† + M̄m,2

k Bm
1†

B2ck
†� + H.c. �11�

The ground-state energy is chosen to be zero and ��m and
��B denote the energy levels of the four-level system, illus-
trated in Fig. 2, with two exciton and one biexciton levels.

IV. EQUATIONS OF MOTION

The temporal evolution of the system is calculated via the
Heisenberg equation of motion −i��tA= �H ,A� for occurring
many-body expectation values �see below�. We focus on
�A�= 
�B1

1†B1
1� , �B2

1†B2
1� , �B2†B2�� as observable quantities;

Fig. 4 depicts the corresponding excitation scheme. All cor-
relations up to the fourth order of the light-coupling element

M̄m
k are included. The corresponding set of equations reads

for single-mode excitation, i.e., ck
�†��c�†� �with M̄m

k =M̄m�.
Also, to consider dissipation processes, the electronic system
is coupled to a photon reservoir, which causes a decay of the
exciton and biexciton states.24 The decay rate is described
via the Einstein coefficient �= �500 ps�−1.10 The equations
for the ground state and excited-state densities read

�t�G†G� = 2���B1
1†B1

1� + �B2
1†B2

1�� − 2�
m

Im�M̄m�G†Bm
1 c†�� ,

�12�

�t�Bm
1†Bm

1 � = − 2���Bm
1†Bm

1 � − �B2†B2�� + 2 Im�M̄m,2
� �B2†Bm

1 c�

+ M̄m�G†Bm
1 c†�� , �13�

�t�B2†B2� = − 4��B2†B2� + 2�
m

Im�M̄m,2�Bm
1†B2c†�� .

�14�

The electronic densities in Eqs. �12�–�14� couple to photon-
assisted polarizations. The photon-assisted polarizations in
the second order of electron-light coupling read

�t�G†Bm
1 c†� = − i��m − � − i���G†Bm

1 c†� + i�M̄m
� �G†Gc†c�

+ M̄m,2�G†B2c†c†�� − i�
l

M̄l
���Bl

1†Bm
1 c†c�

+ �Bl
1†Bm

1 �� , �15�

�t�Bm
1†B2c†� = − i��B − �m − � − 3i���Bm

1†B2c†�

− i�M̄m,2
� �B2†B2c†c� + M̄m,2

� �B2†B2��

− iM̄m�G†B2c†c†� + i�
l

M̄l,2
� �Bm

1†Bl
1c†c� .

�16�

A Born approximation in this order of electron-light coupling
element leads to a photon-density-driven inversion. Since the
intensity of the driving field is expressed via the photon den-
sity and is chosen to be equal for different light sources,
differences in the photon statistics do not enter in the present
order of electron-light coupling element. Equations �15� and
�16� include spontaneous emission and couple to photon-
assisted densities, which are given in the Appendix �Eqs.
�A2� and �A3��. A characteristic quantity of Förster-coupled
nanostructures is a two-photon polarization �G†B2c†c†�,
which enters in higher order photon-assisted polarization
�see Fig. 4 and Eq. �A5��

FIG. 3. Coulomb-interaction between the electrons leads to en-
ergy renormalization of the ground state Vvv, monoexcitonic Vvc,
and biexcitonic state Vcc, as well as to Förster coupling VF, corre-
sponding to a nonradiative energy transfer between the quantum
dots.

B
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FIG. 4. Excitation scheme for two Coulomb-coupled quantum
dots. G�†� is the ground state, Bm

1�†� the exciton, and B2�†� the biex-
citon annihilation �creation� operator. To create a biexciton density,
there are three excitation paths. The two-photon polarization
B2†Gcc is crucial for the photon statistics and couples to the
photon-density-assisted exciton-biexciton polarizations B2†Bm

1 c†cc
�m=1,2�.

PHOTON STATISTICS AS A PROBE FOR EXCITON… PHYSICAL REVIEW B 79, 035316 �2009�

035316-3



�t�G†Bn
1c†c†c� = − i��n

1 − � − i���G†Bm
1 c†c†c�

− 2i�
l

M̄l
��Bl

1†Bn
1c†c�

− i�
l

M̄l
��Bl

1†Bn
1c†c†cc� − iM̄n

��G†Gc†c†cc�

+ iM̄n,2�G†B2c†c†c†c� + iM̄n,2�G†B2c†c†� ,

�17�

�t�Bm
1†B2c†c†c� = − i��2 − �m

1 − � − 3i���Bm
1†B2c†c†c�

− 2iM̄m,2
� �B2†B2c†c� − iM̄m,2

� �B2†B2c†c†cc�

+ i�
l

M̄l,2
� �Bm

1†Bl
1c†c†cc�

− iM̄m�G†B2c†c†c†c� . �18�

On this level, also the photon statistics of the incident radia-
tion occurs via its characteristic g�2� value, including bunch-
ing or antibunching features �cf. Sec. II�. In the fourth order
of the light-coupling element, the set of differential equations
is closed via the Born approximation29 �B1

1†B1
1c†c†cc�

= �B1
1†B1

1��c†c†cc�. Here, the photon correlation �c†c†cc� is
represented by g�2�= �c†c†cc� / �c†c�2 �see Eq. �1��; replacing
�c†c†cc� with g�2��c†c�2 statistical properties is implemented
via the choice of g�2�. After these approximations, substitu-
tion, and neglecting quantities, which couple to fifth order in
the light coupling, hence Eqs. �18� and �17� read

�t�G†Bn
1c†c†c� = − i��n

1 − � − i���G†Bm
1 c†c†c�

− 2i�
l

M̄l
��Bl

1†Bn
1c†c� + iM̄n

�g�2��c†c�2�G†G�

− i�
l

M̄l
�g�2��c†c�2�Bl

1†Bn
1�

+ iM̄n,2�G†B2c†c†� , �19�

�t�Bm
1†B2c†c†c� = − i��2 − �m

1 − � − 3i���Bm
1†B2c†c†c�

− 2iM̄m,2
� �B2†B2c†c� − iM̄m,2

� g�2��c†c�2

��B2†B2� + i�
l

M̄l,2
� g�2��c†c�2�Bm

1†Bl
1� .

�20�

The set of differential equations is closed. In Eqs. �19� and
�20�, typical quantum-optical effects are visible such as the
spontaneous emission, depending in the fourth order only on
photon-density-assisted exciton and biexciton densities. Also
the photon-density-driven inversion, responsible for induced-
absorption and emission processes, can be recognized. Fur-
thermore, characteristic for Förster-coupled nanostructures,
excitation transfer from, e.g., quantum dot L to quantum n
influences the system dynamics.

V. NUMERICAL RESULTS

The system of differential equations �Eqs. �14�–�18�� is
numerically solved. Initially, the electronic system is in the

ground state �G†G�=1; all other quantities are zero. Light
sources with different g�2�, but having an equal mean photon
number �c†c� are chosen to discuss the g�2� dependence of the
excitation efficiency. The g�2� function differs in the case of
�=0 for different statistics �thermal light: g�2�=2, coherent
light: g�2�=1, squeezed light: g�2�=0.2�.30 Since we have a
single mode theory, the stationary excitation of a constant
flux of photons �c†c� balances the loss of photons due to
spontaneous emission into the dissipative modes. The exci-
tation strength is determined by the dipole moment Mm and
photon number. It is kept within the validity of the applied
Born approximation, which can be deduced by an indepen-
dent evaluation of the Jaynes-Cummings model for a single
exciton.31 The excitation frequency is chosen to be resonant
with one ground state to single-exciton transition �see Fig.
2�, which is approximately half of the ground state to biex-
citon transition. Due to the Förster coupling, there is always
an energy splitting between the exciton frequencies, so the
exciton densities cannot be both in resonance �see Fig. 2 and
the absorption spectrum, inset in Fig. 5�. Figure 5 shows the
exciton density of the lowest optical transition, the photon
flux is adiabatically switched on. The optically generated
exciton-density buildup is plotted for three values of g�2�.
The exciton density for squeezed and coherent excitations is
higher than for thermal excitation. Thus, a small value for
g�2� is advantageous if excitons are created. This occurs,
since only one photon is absorbed to create an exciton and a
part of the bunched photons passes the electronic system
unused. In this case, it is more effective to excite with anti-
bunched light when photons arrive successively. However,
the quantitative influence of the photon statistics remains
small. This changes drastically for the exciton of higher ex-
citonic complexes. In Fig. 6 the biexciton density for differ-
ent g�2� is plotted. Here, thermal excitation is clearly advan-
tageous for creating biexciton densities. The influence of the
photon statistics has an opposite effect compared with exci-
tonic excitations: biexciton creation is a two-photon process,
thus more susceptible to photon correlations. Compared to
the single-exciton dynamics in Fig. 5, where antibunched
light is advantageous for the creation of excitons, multipho-
ton processes, such as biexciton generation, e.g., �B2†Gcc� in
Fig. 4, favor bunched photons, i.e., simultaneous absorption
of photon pairs. Therefore, biexcitonic levels are populated
stronger for thermal excitation.
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FIG. 5. Single-exciton dynamics for stationary excitation with
different values for g�2�. �Solid curve: g�2�=1, coherent excitation;
dashed curve: g�2�=2, thermal excitation; dotted curve: g�2�=0.2,
squeezed excitation.�
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Next, we study the excitation dependence of the quantum-
optical excitation scheme. In Fig. 7, the exciton densities are
plotted as a function of the excitation strength �c†c�=n
�mean photon number�. Also the percental deviation from
coherent �laser g�2�=1� defined by

�Bth/sq
1 =

�Bm
1†Bm

1 �coh − �Bm
1†Bm

1 �th/sq

�Bm
1†Bm

1 �coh

� 100 �21�

is shown. The exciton-density deviation depends linearly on
the mean photon number of the photon flux. For weak pump-
ing, the photon-statistical impact on the creation of single
excitons can be neglected. The calculations confirm that for
single-excitons different values of g�2� are negligible, unless
the excitation strength is high enough to populate many-
particle correlations �G†Bm

1†c†c†c�, �Bm
1†B2c†c†c� in the fourth

order of the light-coupling element. With increasing excita-
tion strength, the difference becomes measurable in a typical
pump-probe experiment.17,27 In our case, the theory predicts
differences up to 3% �not shown�. For comparison, in Fig. 8,
the more sensitive biexciton densities and its deviation from
coherent excitation ��B2� are plotted

�Bth/sq
2 =

�B2†B2�coh − �B2†B2�th/sq

�B2†B2�coh
� 100. �22�

Here, photon statistics show a large impact: up to 40% de-
viation in populating the biexciton density can be obtained
rather independently of the excitation strength. Furthermore,

a qualitative change cf. to Fig. 7 can be seen; thermal exci-
tation populates biexcitons stronger, thus the deviation is
negative, in contrast to the case when creation of single ex-
citons is investigated and deviation is positive, showing an
inversed behavior with respect to exciton generation. With
higher excitation strength only the absolute value of the de-
viation increases, but not the relative.

VI. CONCLUSION

In conclusion, our results suggest strong qualitative differ-
ences of excitonic and biexcitonic behaviors on the photon
statistics of the incident light. The photon statistics takes
advantage of different aspects of the material excitation and
may be used for possible optical device, detecting absorption
of different many particle species to measure the photon sta-
tistics directly.
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APPENDIX: EQUATIONS OF MOTION

In Förster-coupled nanostructures, exciton transfer occurs.
The equation of motion reads

�t�Bm
1†Bn

1� = − i��n − �m − 2i���Bm
1†Bn

1� − i�M̄m,2
� �B2†Bn

1c�

− M̄n,2�Bm
1†B2c†�� − i�M̄m�G†Bn

1c†� − M̄n
��Bm

1†Gc�� .

�A1�

This quantity depends strongly on the energy splitting, thus
on the Coulomb parameter. It oscillates for strong Förster
coupling and is driven by the photon-assisted polarizations,
which couple to photon-assisted exciton densities

�t�G†Gc†c� = 2���B1
1†B1

1c†c� + �B2
1†B2

1c†c��

− 2�
m

Im�M̄m�G†Bm
1 c†��

− 2�
m

Im�M̄m�G†Bm
1 c†c†c�� , �A2�
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FIG. 6. Biexciton dynamics for stationary excitation with differ-
ent values for g�2�. �Solid curve: g�2�=1, coherent excitation; dashed
curve: thermal excitation g�2�=2; dotted curve: squeezed excitation
g�2�=0.2�.
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1 for thermal excitation; dotted curve: �Bsq
1 for squeezed

excitation�.
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FIG. 8. Biexciton density and percental biexciton density differ-
ences as a function of the excitation strength. The coherently driven
biexciton density �solid curve� is taken as a benchmark �dashed
curve: �Bth

2 for thermal excitation; dotted curve: �Bsq
2 for squeezed

excitation�.
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�t�B2†B2c†c� = − 4��B2†B2c†c� + 2�
m

Im�M̄m,2�Bm
1†B2c†c†c�� ,

�A3�

�t�Bm
1†Bn

1c†c� = − i��n
1 − �m

1 − 2i���Bm
1†Bn

1c†c�

− i�M̄m�G†Bn
1c†c†c� − M̄n

��Bm
1†Gc†cc��

− i�M̄m,2
� �B2†Bn

1c†cc� − M̄n,2�Bm
1†B2c†c†c��

− i�M̄m,2
� �B2†Bn

1c� − M̄n,2�Bm
1†B2c†�� . �A4�

These photon-assisted exciton densities decay with the Ein-
stein coefficient � exactly like the exciton densities. The

third order in the electron-light coupling element M̄m couples
to the fourth order, which as well includes the two-photon
polarization

�t�G†B2c†c†� = − i��B − 2� − 2i���G†B2c†c†�

− i�
m

M̄m
� �2�Bm

1†B2c†� + �Bm
1†B2c†c†c��

+ i�
m

M̄m,2
� �G†Bm

1 c†c†c� . �A5�

The two-photon polarization opens two additional channels
to excite a biexciton in the coupled system. Due to this quan-
tity, which influences the quantitative results strongly, a
simple analytical solution cannot be derived.
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